按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
如果根据实验结果所决定的系数值不是过大或过小,则可断定在这几个量之间可能存在相关性。
最后强调几点:
1。 量纲分析的基本方法没有固定的形式与结构;
2。 变量和常数的正确选择常常依赖于建模者良好的直觉;
3。 假说是十分必要的,不可太机械地利用量纲分析法;
4。 P定理有双重含义:其一是存在一组无量纲量群,其二是如果主要变量或量纲数为m,导出变量数为n,则其必要的独立无量纲量群的数目为n…m;
5。 量纲和单位之间有差别,我们要保持单位的相容性和量纲的一致性;
6。 无量纲量群是组建模型的砖石。
§2。2 数学模型的性质应用条件及评价准则
数学模型是抽象模型中应用最为广泛的一类,它除具有一般模型的性能外,还有其独特的性质与功能,这就是数学模型日益渗透各个领域的原因。数学模型是借助抽象的数学语言来表述、分析和研究原型的数量的关系及量变规律的。由于数学本身的高度抽象性使数学模型不可避免地具有一定的抽象性,数学模型可以简化复杂的问题,提取关键的性质,使人们看到原型的本质,另一方面,数学模型有其具体的、确定的客观原型,它是原型的反映,故数学模型又有一定的现实性,这两重性使数学模型得以广泛应用于自然科学和社会科学。众所周知,数学是一个自封闭的、严谨的逻辑系统,因此受制约的数学模型必然具有严格的逻辑关系。如果数学模型是正确的,那么,由其推导出的结果也必然是正确的,这是其它模型所不能比拟的。
数学模型与其它模型的不同之处还在于它有坚实的理论基础和有效的实现手段,理论基础是指数学理论的支持,从最基本的概念、定义或公理出发,经过严格推理建立起来的数学公理化理论系统,有许多可利用的定理、方法和结论。实现手段是指计算机的普及为数学模型的应用奠定的物质基础。如果说,运用数学模型是一种科学成功的标志,那么,这种科学的完善的方式就是运用数学模型。
由于现实世界的任何事物都具有一定的数量关系和空间形式,因此,原则上说,数学模型可以研究任何原型。当然,数学模型的应用,也受一定条件的制约,有其应用的范围。Rosenblueth和Wiene (1945)曾对物理模型的实用性给出充分必要条件:
1。 在不熟悉或不太熟悉的领域(原型〃空间〃)里的一个现象必须被(更)熟悉的领域(模型〃空间〃)里的一个现象所代替。
2。 模型化实验必须在比原型实验更有利的条件(包括费用、时间等)下进行。
这两个条件对于数学模型在经济中的应用也是有启发的。
数学模型在经济中的应用是很广的,从应用的目的归纳大致包括四个方面:
1。 观察和预测经济事物的机理变化和发展趋势;
2。 规划和设计经济的现实与未来;
3。 分析和控制经济的运动与规模;
4。 研究和解释经济现象及规律。
具体地说,数学模型是为了增加经济效益,降低经济消耗,合理地利用现有的资源等等。经济上需用模型的原因还在于人们往往不能或无法直接驾驭经济现实,所以借助数学模型是必然的。
数学模型可以用于研究许多经济问题,但这并不意味数学模型可无条件地应用,应用数学模型的必要条件是:
(1)经济原形(EP)可以映射到数学〃空间〃
此条件包括:EP的有关概念定义明确;EP的经济假说具有一定的科学性;在数学〃空间〃里存在着与假说的数量关系、逻辑关系或混合关系〃同构〃的数学关系式;可以通过必要的推导或证明得出有意义的数学结构;所需要的EP信息必须能够收悉,并可处理和转化成为模型的参数。
(2)数学模型在数学〃空间〃中可以研究
此条件包括:研究数学模型的数学理论与方法是完备的;数学模型必须满足一定的数学性质(如可解性、稳定性、可计算性等等);结果必须能从数学上验证其正确与否。必要时,可以在计算机上实现。
(3)数学模型及其结果可以映射回经济〃空间〃
此条件包括:数学模型及其结果有一定的经济解释,可以验证经济假说或可以用经济实践检验。即数学模型及其结果可以用于指导经济工作。
如果上述三个条件不能满足时,不宜使用数学模型。
对经济原型的多种的希望使评价模型的准则也是多种多样的,人们总是希望在众多的〃可行的〃模型之中寻找一个最佳的模型,一般说来,合格的数学模型应当具有下列性质:
(1)真实性或现实性:如果一个模型客观地反映了原型或子原型的量与量的关系,则称此模型具有真实性或现实性。
(2)一般性或普遍性:如果模型的数学结构能够用于许多其它原型,则称此模型为异原模型,具有一般性或普遍性。
(3)简洁性:如果模型能突出原型的主要矛盾和特征,而且忽略、舍弃次要的矛盾和特征,则称模型具有简洁性。
(4)精确性:如果模型能够在一定程度上,比较准确地刻划原型数量方面的特征,则称模型具有精确性。
(5)有效性:如果模型可以多方面地从不同的角度刻划经济原型或可以派生出较多的信息,而且具有多种功能,则称模型具有有效性。
这些准则并非一定之规,使用时可以权衡利弊,有所取舍。
模型化与模型是密切联系的,除模型化所得到的模型有上述性质外,模型化本身应满足以下的要求:
1。 可行性:可行性包括:信息可采集、可转化、模型可构造、算法可实现、假说可验证、结果可解释等等。
2。 经济性:模型化的过程中有一定的消耗,其中包括调查情况、收集资料、处理信息、构造模型、计算、分析、验证等等过程中的费用。模型化的收益与费用应当相称,经济性要求对模型化的规模和复杂程度加以控制。
3。 实用性:经济数学模型化贵在有实用价值,这里包括模型化过程所需的时间短、经济实践中使用方便、可靠。
值得指出,模型化的要求对模型的选取也有一定的参考价值。
§2。3 数学模型的分类
下面讨论一下数学模型的分类问题,这对于正确地构造模型和使用模型都是有益的。下面叙述几种分类方式。
(一)按模型的数学性质分类
按数学模型的性状大致可分为三类。其一为确定性模型,其原型具有相对地确定性或必然性,原型的各种关系相对稳定明确,模型的数学结构多为各种方程式,点集映射关系式和图式。其二为随机性模型,其原型具有随机性或偶然性,原型的某些关系是波动的和不肯定的。模型的数学背景理论是概率论、随机过程、数理统计、多元分析、和鞅论等等。其三是模糊性模型,其原型及其关系具有模糊性或不分明,其处理方式是Fuzzy子集理论、信度理论、证据理论和Fuzzy逻辑等等。
按数学模型的各种变量、参量和函数结构的变动情况,可以把模型分为连续型模型,非连续性模型和离散性模型。连续性模型对于任何量或关系的微小摄动是相对稳定的;非连续性模型对某些量或关系的变化是间断的,有跳跃的;离散性模型则多指其变量是可列点列构成的。
根据模型的参量可以分为固定参数(fixed…parameter)模型和自适应参数(adaptive…parameter)模型,前者在模型化过程中所涉及的参数只需给定一次,而后者则随着原型的变化而进行必要的调整,这时参数往往属于一个参数集合或空间。
(二)按模型与时间的关系分类:
亦可分为三类。首先,若模型的行为随时间而变化而且时间是独立的变量,则称为动态模型,其原型和时间关系密切(有时也称随阶段变化的模型为动态模型)。其次,若模型的行为不随时间而变化(时间可以是参量),则称之为稳态模型。其原型对时间的变化相对稳定。另外,若一非稳态的原型用一系列静态模型来表示,则称此系列模型为拟稳态模型。其原型是动态的,而这一系列模型中每一个模型是稳态的。如果细分,动态模型还可分瞬时模型(instantaneous)和记忆模型(memory)。前者在任意给定的瞬刻的行为只取决于此刻的环境或因素;而后者在任意给定的瞬刻的性态可能依赖此刻之前的一段时间的历史环境或因素。记忆模型还可以分为两种:其一,独立于此刻自身的行为而此刻之前的一段固定的有限时间称为定时距(time invariant)模型,其二,在现在任一瞬间的记忆范围,直到过去的一个固定的瞬间称为变时距模型,这引出所谓因果性分类,即若模型在一瞬间的行为取决于过去和现在,则为因果模型,若其还取决于未来则为非因果模型。此外,动态模型还可分为周期性模型和非周期性模型,随时间总是作为节奏有规律的变化的模型称为周期性模型,否则称为非周期性模型。应当指出,按步骤、阶段而变化(与时间长度无关)的模型有时也称为动态模型。在经济中动态模型是一类应用广泛的模型,尤其在宏观方面。
(三)按模型的经济背景分类
按原型背景分类,可以分为宇观经济模型、宏观经济模型、中观经济模型和微观经济模型。它们的原型背景分别是世界、国家、地区和企业(这种分类尚有异议)。
按学科分类大致有运筹学模型、经济控制论模型、计量经济学模型和数理经济学模型。这模型都有其独特的数学理论和方法,而且可以再细分。
按模型化问题的类型分类,可以分为模拟模型、统计模型、优化模型和结构模型。模拟模型和统计模型重在科学地观察、预测;优化模型重在配置、统筹和最佳控制;结构模型重在对原型的逻辑化、分析、推理和解释假说。
(四)按模型的数学机理分类
大致可分为:
①数学规划类模型:包括线性规划模型、非线性规划模型和动态规划模型等等;
②统计回归类模型:包括时间序列模型、多元分析模型等等;
(五)按模型化目的分类
大致可分为:观察和解释模型、计划和设计模型、计划和设计的优化模型、机理过程分析模型、控制模型和研究模型。
此外,还有一些其它的分类方式,而且分类不是绝对的。但是,识别模型的类别无论对构造模型还是使用模型都是十分必要的。
§2。4 模型化过程
许多人曾给出过数学模型化的步骤,但很少有人详细地说明这个过程。本节试图详尽地阐述模型化程序,给读者一个较清楚的轮廓。我们首先给出模型化流程图。
模型化流程图 图2。1
§2。4。1 模型化方向的表述和经济原型的机理分析
一、模型化方向的表述
模型化过程始于对模型化方向的表述,当你怀着通过模型化研究原型的愿望,进入模型化过程,起初的模型化设想可能是模糊的,不完整的,随着模型化的深入和反复,不断地修正、调整,模型化的方向就会逐渐明确。在此阶段,应尽可能地表述整个模型化过程和注意模型化的可行性、经济性和实用性。可四个方面来表述:
(1)表述模型化的目的
包括模型化的动机和模型的用途等等,不同的目的决定着模型化不同的方向,如用于理论研究和实际应用的模型化会有很大的区别,由此引出模型的性质、类型、评价准则等一系列的区别,它是模型化沿正确方向进行的必要条件。
(2)表述对模型的期望
表述包括对模型解决问题的程度、范围以及模型性质的表述,它是模型化目的的深化。
(3)表述经济原型的轮廓
表述包括原型的横向与纵向,原型的内涵与外延,原型的内部、边界和外界等主面的表述,它是进一步明确原型定义的前题。
(4)表述可行的模型〃空间〃
表述主要指建模型者所熟悉的模型的类型,虽然我们尚不知确定何种模型,但通过掌握已知的条件成为可行的模型类型,这时类比分析和考虑异原同模往往是有益的。当然将来构造出的模型可能并不在第一次列出的候选之列,模型化过程是一个反馈型的创造性过程。
上述四方面的表述不是一次完成的,在模型化过程中,可以修正、补充或简化,它们是调查和分析原型的前题。
二、经济原型的机理分析
经济活动通过抽象和提炼而形成了经济问题,它和客观经济现象有所不同。如果我们以一个经济问题为原型,那么其经济背景就是原型的原型。具体原型具体分析是模型化的灵魂,对原型的机理分析的方式可以是多种多样的,我们在此强调的是以定性为主,定量为辅的原则,采用将对象化整为零、把复杂事物分解为若干要素,对局部或要素进行研究和认识的一种手段,一般说来,原型机理分析包括以下三个步骤:
(1)分析原型的外部及边界的机理
其中包括分析原型外部和边界的状况,它们中哪些因素对原型的存在和发展的影响较大,它们是怎样发生作用的等等。
(2)分析原型的内部机理
其中包括分析原型的可分性,子原型的结构和相互依存关系,原型元的特性、作用、存在和变异的条件等等。
(3)综合分析
综合分析包括对原型的内部、外部和边界的相依关系,原型存在和消亡的条件、发展和变化的形式和趋势,以及原型的本质与特征和遵从的规律等方向的分析,它是我们进行简化和抽象的关键。
分析使经济原型的各种属性和本质清晰地呈现在我们的面前,而综合则把经济原型的各个部分、侧面、因素统一起来加以考虑。
综合是建立于分析的基础之上,运用正确的社会经济科学理论和概念,对原型的各个子原型和各种要素的理解统一为对原型的整体认识。这种认识将引导人们对原型进行合理的抽象和作出科学的假说。
§2。4。2 模型化假说和模型的构造
一、模型化假说
假说是自然科学和社会科学发展的描述形式,是通向客观真理的必由之路,它在模型化过程中也是最为关键的一步。严格地说,模型化假说是由经济假说到数学假设的过程。
所谓经济假说指依据客观经济事实和普遍规律,结合一定的经济概念、原理和科学知识,对于经济原型及其本质和规律所作的推断或解释,由于社会经济的机制复杂,因果关系不甚分明,假说是经济研究中常用的方式,如西方的各种经济学流派的理论实为不同的假说,经实践检验是正确的假说,就形成了理论,作为经济假说往往有三个性质:
一、似然性。人们常常感到假说与人们的直观的想象差异不大,但都不能断定其真伪; 二、推断性。由于造成一个社会经济现象产生的原因很多,假说往往是凭着构模者的推测或判断,找出在冥冥中牵引的魁首;
三、简明性。假说不再是原型本身,它简化了原型的复杂程度,抽象出最本质的东西,对原型的结构,趋势和规律做出了较明确的规定。
关于经济假说的范围大致应有两方面:
(1)对原型有关的经济概念的假说,一般说来,一个经济概念往往有多种解释,这与模型化不利,因此,在假说中应明确一切有关的经济概念前后一致,以统一口径。此外,假说时,要注意尽量使用量纲或可定量化的经济概念。
(2)对原型的经济规律的假说,由于原型及原型中子原型和原型元的逻辑关系和变异形式可能很繁琐,所以必须选择其关键的逻辑关系,普遍性的变异形式加以假说,排除一切不明确的或小概率的情况,假说原型在一定的条件下,遵从某种规律。
在经济假说中应注意承上启下,考虑经济假说的合理性。所谓合理性包括:假说中有关的信息是否可以获得,是否可靠,能否定量化;经济假说是否有适当的依据,能否检验,是否符合原型的客观背景,经济假说是否为数学假设奠定了足够坚实的研究基础,等等。在运用经济假说时,要充分发挥主观能动性,依据科学原理而不拘泥其间,勇于提出自己的假说;根据客观事实,利用创造性思维,对未知的事物进行推断;正视现实,以无私的态度接受实践的检验,不断地修正或放弃经济假说中的不妥之处。
数学假设是经济假说的精确化。它是用数学术语考虑前述一切过程。 对经济假说中所使用的基本经济概念或经济量作出数学假设。一般将要研究的量设为变量,将影响模型但非我们所要研究的量设为参量。此外,根据具体原型及经济假说,对变量和参量的数学性质,定义域以及变量间的相互关系等等,给予严谨的数学定义。在数学假设中,既要尽力与经济原型吻合,又要有所创造和抽象,即要满足经济假说的描述,又要兼顾模型的可构造性。因此,数学假设是十分关键。最后,假设中还要考虑如何将实际的经济信息转化成模型的参数问题,关于这一点本文下面还要论述。
二、数学模型的构造与推导
构