友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八万小说网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

宇宙和生命-第133部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



成中子, 这时核子就变成了一个裸核。 随着温度的升高, 核外电子数减少, 物质的导电性能下降, 当变为裸核时, 原子核显中性, 这时完全不导电。 所以物质的导电性能随温度的升高而降低。 但是, 在整个升温过程中, 原子核外部分电子也获得能量后离开原子核成为自由电子。 

  当温度升高到原子核成为全裸时, 抗裂变背景压力也就会很高了, 核子与核子之间的结合就更加容易了, 由于裸核不显电性, 核子外围又没有厚厚的电子云覆盖屏蔽, 既使核子之间的对心碰撞速度很低, 也容易结合成大核, 当所需要的使原子核变为全裸核的高温条件在实验室达不到, 核外仍有少部分电子存在的情况下, 可以通过带电核子加速的办法, 使核子之间发生高速对心非弹性碰撞, 克服电子云的屏蔽使核子相互结合。 此时核子所需速度必须比裸核时高出许多。 

  氢核的热核聚变, 就是通过原子核裂变产生极高的抗裂变背景压力, 来达到其聚变所需的极高温条件的。 在极高温条件下, 氢原子变成全裸核(核外电子进入核内或成为自由电子)。 两个小核结合生成氦原子核, 同时放射出巨大的能量。 待能量释放完后, 氦原子核周围的温度开始下降, 当降到一定温度时, 氦原子核中的两个中子放射出电子, 这两个电子就成为氦原子核的核外电子。 

  同样, 我们也可以得出以下结论。 要想使原子核稳定, 在不同的温度和密度条件下, 核内的质子数和中子数的比例也应发生变化。 温度越高, 核能的中子/质子比必须很高, 才能保持核子的相对稳定。 中子/质子比的改变是通过吸收核外电子使其与质子结合成中子而完成的。 这时原子核外电子数目也会相应减少。 温度越低, 原子核内质子就会裂变成质子和电子,使核内中子、质子比降低来达到保持核子的相对稳定,这时核的质子数增加了,核外的电子数也就增加了。因此可以说,原子的核质子数、中子数、电子数是温度、核密度的函数。只有三者有机的配比结合才能保持整个原子的相对稳定性。温度升高,质子数减少,原子序数降低,中子数增加,核外电子数随质子数的变化而变化。

  低温超导现象。不同的物质其低温超导的临界温度不同。这跟原子核中子数和质子数有关。有些原子核中的中子放射出电子后,原子的电离降低明显,这样的原子的超导临界温度就较高;有些原子核的中子放射出电子后,原子的电离能降低不多,这时超导临界温度就会较低,它有可能要等到原子核中的中子放射出第二个电子后才使得原子的电离能降低明显,自由电子的自由能力才加强。因此,要出现超导现象,必须使核外自由电子数目多且自由能力很强。也就是在小的电场作用下,就有极为活跃的自由电子和足够的自由电子数目。

  7.电子和电磁力的产生

  宇宙大爆炸开始前的一瞬间,整个宇宙为一个大的原子, 核外没有电子,核内也没有质子,全由中子组成,宇宙的温度极其极其高。随着原子核的不断裂变演化,原子核越来越小,在其初期温度仍极其高,原子核仍处于剧烈的裂变过程中,核外仍然没有电子存在,整个原子核呈电中性;当温度降到一定程度时,原子核的纯中子的分裂减少,于是中子就开始分裂成质子和电子,诞生了电子和质子,同时也出现了电磁相互作用。电子在质子电场作用下绕核子运动,这时核外的电子数还是相当少,仅一、两个或四、五个;随着宇宙的进一步膨胀,温度密度进一步降低,核内中子分裂为质子和核外电子的数目增加,直到现在这种状况。现在,仍有许多核在裂变,核内的中子、质子比仍在进一步降低。从以上讨论得出,在电子诞生之前,质子和电子不存在,整个宇宙中没有电磁相互作用,直到核裂变到足以产生电子时,才出现电磁相互作用,电磁相互作用是核裂变到一定时期的产物。在电磁相互作用出现之前,只存在核力和斥力(或引力)相互作用,弱相互作用是电磁相互作用的前提和基础。有弱相互作用,核子就存在放射性。放射性是核裂变的一种特殊形式,是较为温和的核裂变,是产生电子束及带电粒子的根源。因此,超导现象又可以说是弱相互作用和电磁相互作用通力合作的典范。

  恒星内部的大核裂变和外表的氢核聚变

  现今宇宙中的恒星,均是宇宙大爆炸时遗留下来的大的正在裂变的碎片,是未能充分裂变的较大的原子核的集合体,其中正在发生作核的裂变和聚变,既有大质量的核子也有小质量的核子,大的原子核可能有几万公斤,甚至更大,小的核子就是氢核了。大质量的核聚集在恒星的中心区域,人类无法探测到大核的存在,因为大核裂变时产生的大量极小的碎片(如氢、氦等)浮在恒星的外部,包裹在大核的表面,在重力和浮力作用下,从恒星中心到表面,形成了由重到轻的核子梯级分布。对大质量的核子的裂变是一种链式裂变,其蕴含的能量比仅一分为二时大得多。 

  同样,在地球的中心位置,也存在较大的核子,比人类已发现的核子要大得多,仍在裂解释放出巨大的能量。形成地球内部的高温、地球表面的火山爆发。地球表面放射性元素的唯一来源就是地球核心大原子核的裂变产生的较大的原子核。距地表越深,温度越高,抗放射背背景压力就越高,核子的放射性受到抑制,所以核子的质量就越大,小质量的核子数就越少。

  9. 原子核的结构与原子核周期表

  一般认为,原子由原子核和核外电子组成,原子核是由质子和中子组成的,中子和质子的组成比必须在一定的范围内才能保持核子的相对稳定,才不具有放射性。 

  如果认为原子是由质子和核外电子组成,核内不存在中子,核内的中子由质子和核内电子组成。则核内质子数即为核子数,核内电子数即为中子数。核内的所有电子不属于某些核子独有,核内电子好象核外电子一样围绕着所有质子运动,核内的电子属于每一个核子,就好象核外的电子属于整个原子核一样。

  因为核子都是质子,都带正电,核内电子带负电,核内电子在电磁力作用下绕核子作环绕运动。由于核内电子更接近核子,所受到的电磁作用力更强烈,这就是为什么核外电子容易电离而核内电子难以电离、离核远的电子容易电离而离核近的电子难以电离的原因。 

  同核外电子的情况一样,核内电子也是分层运动的,离核较近的电子受到的约束较强,电离所需的能量就较大;不同的原子核,核内电子逃逸出来所需的能量大不一样,就象元素周期表中元素的排列顺序,金属原子核外电子的电离能低,而非金属原子核外电子的电离能高。所以金属原子具有自由电子,是电的良导体,而非金属原子核外电子束缚的很紧,没有自由电子,是绝缘体。对核内的电子同样也有相似的规律,不同的是原子核的排列顺序不同于化学元素周期表的顺序。需根据原子核的性质来重新排列,按原子核的性质周期性变化排列出来的表叫做原子核周期表。 

  原子核周期表是根据原子核内中子数(或核子数)的多少作为顺序来排列的,因为中子数(或核子数)的多少决定了核(或核外电子)的性质。

  根据以上讨论,得出如下结论。

  (1) 质子是中子失去电子后的裸体。

  (2) 中子是由质子和电子组成,但要和氢区别开来。中子的电子的电离能比氢中的电子的电离能高得多,电子离核的远近也大不一样。中子中的电子一般不参与化学反应,只参与高能量级的核反应,而氢中的电子参与化学反应,电子容易电离成为自由电子。 

  (3) 超导的产生与核内电子的运动和能级有关。核内电子逃逸能低的核,产生超导所需的温度就高,可以通过原子核周期表中不同的位置来寻找超导温度高的元素。对应有些核内电子在低温下极易发射出低能电子,使得该电子成为原子外的束缚电子。这样,原子半径增加了,核外电子束缚力下降了,自由电子更容易在电场作用下运动,因而出现超导现象。当温度升高,开始发射出的电子又回到核内,该原子又恢复原来性质。

  (4) 多中子原子核,核内电子层的结构较为复杂,根据以前的原子能级图可知,核外电子的跃迁,将以吸收或发射电磁波的形式表现出来,同样原子核的能级图也是通过原子核内电子的跃迁,同样也以吸收或发射高能电磁波的形式表现出来。当极高能量的电磁波照射原子核时,与之相同能级的原子核激发到高能级(亚稳态),处于亚稳态的核子极不稳定,又会跃迁发出高能电磁波。具有放射性的核都处于一种极不稳定的高能态。 根据不同原子核的结构和不同的高能态,可产生α粒子、β射线、γ射线等等多种核放射反应。有些处于稳态的核,当受到外界中子辐射等作用后,可使其激发跃迁到亚稳态,核子受激发的能量必须与核能级的能量相吻合。能量太低只能使核外电子受激跃迁。不能使核内的电子受激跃迁。对于氢核,核内没有电子,则它的核就不存在能级。核内中子数越多的元素的核能级图就越复杂。能发射出来的电磁波的种类就越多。

  核内电子数与质子数的数量关系。一般情况下电子数少于质子数。核内电子数达到一定程度就会饱和,再增加电子,核的半径将增加,质子对核内外层电子的吸引力下降,甚至不足以保持电子在核内绕核运动而发生跃迁成为β射线。

  α粒子(氦原子核)是基本粒子中最稳定的核子之一,稳定的原因是其中的4个基本粒子是类似金刚石的正四面体结构,它的“硬度”最高,在一般外力作用下难以分裂。类α粒子(核子数为4的倍数)都是类似金刚石的正四面体结构,因而是相对稳定的粒子

  (6) 化学元素周期表

  一个原子的核内和核外电子的物理空间没有绝对界限。核内的电子和核外的电子一样,只是处于不同的运动轨道、离核远近不同、能级上有差别,所以很难说哪个能级是核内电子所具有的哪个能级是核外电子的。对核外有多个电子的原子,很难将最里层的核外电子电离出来。原子核内电子和核外电子没有绝对界限。原子由质子和绕质子着高速运动的电子组成,原子内部不存在中子。所谓中子,是最简单的原子。氕也是最简单的原子,它们的组成形式十分相似,是一种同一种物质处于两种不同能级状态。中子中的电子处于极低的能级状态,离核较近;而氕原子中的电子则处于较高的能级状态,离核较远,电离能较小,能参与化学反应。如果给中子以极高能量的电磁辐射,核外的电子也可以跃迁到氕的高能级状态。

  10. 同位素

  同位素是具有相同质子数而中子数不同的一类元素的总称。根据以上结论,同位素应为,在化学元素周期表中处于同一位置而核内电子数(即核内中子数)不同的一类元素的总称。核子数减去核内电子数的差相同的一类元素。同位素是根据化学元素周期表来定义的。

  对于原子核周期表,核内不存在中子,只有质子和电子。当核内质子周围电子处于不同能级时,有可能使原子核周期表中不同位置的核子具有相同的化学性质,但核的性质是炯然不同的,因为原子核周期表是按原子核的性质来排列的,在不同的位置核的性质不同。 

  同位素具有相同的化学性质。在化学元素周期表中是同位素,处于同一位置,但在原子核周期表中就不在同一位置了,虽说它们的化学性质相同,但它们的核性质不同。对于核子数不同而化学性质相同的一类元素,如果核子数每增加一个,相当于核外又增加了一个电子,此电子离核很近,完全不会影响到核外层电子的化学、电离等性质,这样的电子处于极低的能级轨道上,可以近似一个质子与一个电子结合在一起成了一个不带电的中子。所以化学元素周期表中的中子都可以看成是一些离核太近、能级太低、不能参与化学反应的电子,认为这些电子已和质子结合成为不带电的中子。这只是一种习惯看法,事实上它们并没有核质子结合,而只是在离核子很近的轨道上绕核运动罢了,它们对核外电子的性质还是有一定的影响。 

  11.电子与质子的关系

  在宇宙大爆炸的初期,原子核外的电子处于离核较近的轨道上运动,电子的能级较低;宇宙继续膨胀,核子数越来越多,核外电子吸收大爆炸释放出来的能量跃迁到高能级,就这样,电子所获得的能量越来越高,慢慢成为自由电子,在脱离核之前,电子和核子的结合力相当大,以至人们都认为它们是中子,不显电性。随着电子逐步激活,慢慢摆脱核子的束缚,中子也就理顺地变成了质子。随着核的继续分裂,核能进一步释放,电子也就继续获得能量而远离核子,也就是说随着时间的流失,化学元素周期表中的元素,其原子核中的中子数就会越来越少,离核子较近轨道上运动的电子数也会越来越少,直到最后核子周围的电子都变成了自由电子,这时整个宇宙将会弥漫着无数的电子幽灵。如果将成为自由电子后的电子仍然看成是该原子的组成部分,这时原子的体积就会相当大。从某种程度来说,原子体积的变化规律,也在一定程度上反应了宇宙的膨胀规律。如同全息技术,一个原子也是一个小小的宇宙,可由局部变化的现象及规律推演到整个宇宙变化的现象及规律。 

  12.放射性的指数衰变规律

  原子核的放射性衰变规律是,核的衰变数量呈指数规律递减。说明抗裂变背景压力也在呈某一种规律(可能也是呈指数规律)减少,显然这就是宇宙的膨胀速率正以指数规律递减的缘故。宇宙正在膨胀,但其膨胀的加速度是负数,体积仍在不断增加。

  宇宙的膨胀导致抗裂变背景压力下降,也必然导致核的裂变将不断进行下去。随着时间的推移,物质的放射性规律是:放射期-稳定期-放射期-稳定期……,这样交替变更的,新的放射性物质会不断产生出来,而这些新的放射性物质正好是前一段时间内没有放射性的较重的元素。物质的放射性按此规律延续下去,直到宇宙膨胀到极点为止。 

  宇宙膨胀过程中光的传播速度

  光是物质从高能态向低能态跃迁时的能量释放。光的传播速度随着宇宙的不断膨胀发生相应的变化。在宇宙膨胀的早期,由于抗裂变背景压力太高,光的传播速度也就较低;随着宇宙的继续膨胀,抗裂变背景压力的下降,光受到的约束减小,传播速度也就增加。

  如同容器内的水从小孔喷出一样,水的压力越高,喷射的速度越快高,如果保持容器内部压力不变,改变容器外部环境压力,若内、外压差小,水从小孔喷出的速度就小;压差相等时,水也就不能从小孔喷出;若进一步改变内、外压差,并使得外部压力高于内部压力,外界环境中的水或其它物质将会受外界背景压力的作用进入容器内。光的传播速度也是这个道理,原子核的裂变和聚变同样也是这个道理。在宇宙膨胀的不同区域,抗核裂变的背景压力不同,有可能使得某些跃迁不能发生,甚至产生逆转,因而光的传播速度也不相同。 

  14.太阳系的起源

  太阳系的起源理论必须能合理的回答下面所列的几个主要问题:太阳系物质的来源,行星的形成过程,行星轨道特性(共面性、同向性、近园性),提丢斯-波特(Titius…Bode)定则,太阳系的角动量分布,三类行星(类地、巨行、远日行星)的大小、质量、密度方面的差别,行星的自转特性,彗星的起源,地-月系统的起源。

  太阳相对于它的公转银河中心运行时约带一点扭矩,所以太阳的自转赤道与黄道(星盘)面有7度多的夹角,所形成的行星自转轴,也不垂直于黄道面。(黄道面:地球绕太阳公转的轨道面。黄道带:黄道两旁各宽8度的范围,日、月、行星都在带内运行) 

  原初太阳系,不是由太阳和绕太阳运行的行星组成,而是仅为一个原初太阳球。绕银河高速旋转,同时自身也在高速自旋。 

  处于高速自旋的太阳球外表面的物体,由于受太阳自转的作用,与太阳外表面的太阳大气一同绕太阳高速转动,产生极大的离心力,同时,太阳外表的物体和太阳大气受太阳引力的作用,使物体和大气都束缚在太阳周围。当物体受到的引力和离心力相等时,物体悬浮在太阳大气中既不上升也不下降。

  由于处于太阳中
返回目录 上一页 下一页 回到顶部 1 2
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!