按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
实希托夫的结果,而创造“阴极射线”一词,他以为这种射线是和普通光线同一性质的以太波。另一方面,伐利(Varley)和克鲁克斯提出证据——例如,这些射线在磁场中发生偏转——说明它们是由阴极射出的荷电质点,因撞击而产生磷光。1890年,舒斯特(Schuster)观察了它们在磁场中的偏转度,测量了这些假想质点的电荷与其质量的比率,而估计这一比率为液体中氢离子的比值的500倍左右。他假定这些质点的大小与原子一样,推得气体离子的电荷远较液体离子为大。1892年赫兹发现阴极射线能贯穿薄的金片或铝片。这一发现,似乎与组成射线的质点为普通原子流或分子流的想法颇难调和。1895年,贝兰证明:这些质点偏转到绝缘的导电体上时,就把它们所有的负电荷给与导电体。在1897年,质点的速度及其电荷e与质量m的比值,为几个物理学家测定之后,它们的性质的问题就得到了解决。一月间,维歇特(Wiechert)证明几种射线的速度约为光速的十分之一;而其e/m则等于电解液中氢离子的比值的2000至4000倍。他按电容器的振荡周期测量速度,而按磁场中的偏转测量e/m。七月间考夫曼(Kaufmann)发表他的实验报告:他从电极间的电位差与磁场中的偏转,求得质点的能量。同时J.J汤姆生将这些射线导入绝缘的圆柱,测量其电荷,并观测其给予温差电偶的热量,而求得其动能。最后他于十月间发现在高度真空下,阴极射线不但能为磁场所偏转,也能为电场所偏转,他因而测量了这两种偏转度。
图11表明汤姆生用来进行上述有历史意义的实验的仪器。一支高度抽空的玻璃管装着两个金属电极:阴极C和开有小缝的阳极A。从C发出的阴极射线的一部分,穿过小缝后,再为第二个小缝B所削细。这样得到的小束射线,经过绝缘片D与E之间,射在玻璃管他端的荧光幕或照相底片上。如将绝缘片连于高电压电池的两极,则其间产生电场。整个仪器放在一强力的电磁体两极中间,使得射线也受到磁场的作用。
假定阴极射线是荷有负电的质点的急流,由简单计算可以看出,射线的电场偏转度,亦如其磁场偏转度,是依质点的速度v及其电荷与质量之比e/m而改变的。所以通过测量电场与磁场的偏转度,便可求得v与e/m的数值。
汤姆生求得质点的速度在光速的十分之一左右,而略有变化,但其e/m则不管气体的压力与性质及电极的性质如何,均无改变。在液体电解质中,以氢离子的e/m为最大,约为10,000或104。汤姆生求得气体离子的e/m为7.7×106,换言之,即为液体中氢离子的e/m的770倍,而考夫曼在1897年12月所求得的更精密的数值为1.77×107。这些结果也许表明,在气体内的阴极射线的质点中,不是象舒斯特所预料的那样,电荷比在氢原子中大得多,就是质量小得多。汤姆生暂时假定这些质点比原子小。他以牛顿所常用的微粒那个名词去称呼它们,并且说它们是我们寻求多年的各种元素的共同成分。但是当时还没有明确的证据可以证明这些微粒所负的电荷,不比电解质中单价离子所负的更大,因而也无法计算其质量。所以电荷的疑案就成了急待研究的下一个问题了。
1898和1899年,汤姆生测量了X射线在气体中所造成的离子的电荷。他利用威尔逊(C.T.R.Wilson)在1897年所发现的方法,即离子和尘埃一样,可以成为潮湿空气中蒸汽凝成雾滴的核心。从这些雾滴在空气阻力下降落的速度,可以计算出雾滴的大小。从凝结的水的体积,可以求得雾滴的数目,再从已知电动势所产生的电流,可以求得电荷的总量。不久以后,汤森(Townsend)测量了离子渗入气体的扩散速度,而由此计算出离子的电荷。到了1899年,汤姆生用云室法与磁场偏转法,测量了相同一种质点(以紫外光射在锌片上所产生的质点)的电荷e和e/m。所有测量结果都证明:在实验误差限度以内,气体质点的电荷与液体单价离子的电荷相符合。事实上,在米利根(Millikan)新近的实验结果中,这两个数字相差不及四千分之一。
由此可见,并非微粒的电荷比液体中氢离子的电荷更大,而是其质量更小。这些微粒是原子的一部分,无论元素的性质如何,均为其原子共有的成分。从汤姆生最初的实验来看,每一微粒的质量似约为氢原子的1/770。但从上述考夫曼测量的e/m,已可求得较精密的结果。自此以后关于微粒的电荷与其e/m,接着又有新的测定,最著名的是米利根的测定。他在1910年改进威尔逊的云室法,又在1911年测量了小油滴在被电离的空气中降落的速度。当一油滴捉到一离子时,其速度便忽然改变。这样求得离子的电荷为4.775×10…10静电单位。这说明这些微粒或电子的质量,为氢原子的1/1830。从气体分子运动论可求得一个氢原子的质量约为1.66×10-24克,所以一个电子的质量约为9×10-28克。
这个伟大的发现终于解决了一个古希腊留下的问题:即不同的物质是否有共同的基础的问题。同时也阐明了“带电”的意义。汤姆生当时发表其个人的观点说:
我认为一个原子含有许多更小的个体;我把这些个体叫做微粒。这些微粒彼此相等;其质量等于低压下气体中阴离子的质量,约为3×10…28克。在正常原子中;这些微粒的集团,构成一个中性的电的体系。个别的微粒,行为虽然好象阴性的离子,但聚集于中性的原子中时,其阴电效应便为某种东西所抵消。此种东西使微粒散布的空间,好象有与这些微粒电荷之和相等的阳电似的。气体的带电现象,我认为是由于气体原子的分裂,致使微粒脱离某些原子。脱离出来的微粒,性质如阴性的离子,每个都荷有一值量的阴电,为简便计,我们名之为单位电荷。剩余的原子的另一部分,性质如一阳性的离子,载有一单位的正电荷,还有比阴电子更大的质量。由此观之,带电现象主要是由于原子的分裂,其中一部分质量被放出,而脱离了原来的原子。
这些新发展与前不久的一种研究,颇有关联之处。按照麦克斯韦的理论,光既然是一种电磁波系,那么光必定是由振荡的电体所发出的。由于光谱是元素所特有的而不是元素的化合物所特有的,所以这些振荡体(或称振子)必为原子或原子的一部分。依照这种推理,洛仑兹(Lorentz)在汤姆生的发现的前几年,创立了一种物质的电学说。这个学说预料,光谱的出现当受磁场的影响,而这一预料已为塞曼(Zeeman)所证实。塞曼在1896年发现光源放
在强磁场之内时,其所发纳光谱的谱线即行变宽。他后来又以更强的磁场将单一谱线分成了两条或多条。根据测量这些线条之间的距离所得的资料,按照洛仑兹的学说,可以算出振荡质点的电荷与其质量之比e/m的新值。如是求得此值的数量级为107电磁单位,根据更精密的测量算出,此数字为1.77×107,与根据观察阴极射线和他法所得的结果甚为符合。
洛仑兹利用斯托尼(J.Stoney)所定的名称“电子”来称呼这些振动的带电质点,而塞曼效应的发现与测量证明,它们就是汤姆生的微粒。我们可以把它们当做是孤立的阴电单位。拉摩(Larmor)以为电子既然有电能,就必定有与质量相当的惯量。这样,洛仑兹的学说就成为物质的电子学说,而且和由汤姆生发现而来的观点完全融合在一起。只不过汤姆生是用物质去解释电,而洛仓兹却是用电来解释物质。
应该指出,当时还有一个默认的假设并没有为后来的研究所证实。这一假设认为,原子中的微粒或电子是按照牛顿的动力学运动的,在最初的时候,人们甚至把原子比做一个小型的太阳系,电子在其中的运动有如行星之绕太阳。但在1930年以前,我们明白这种行星轨道的概念,并不一定符合事实,因而应该放弃。
接着人们便发现还可以用许多别的方法获得微粒或电子:例如高温下的物质及受到紫外光作用的金属,都能发出电子。这些效应由勒纳德(Lenard)、埃尔斯特(Elster)和盖特尔(Geitel)、理查森(O.W.Richardson)、拉登堡(Ladenburg)等人加以研究,此后这种热效应在无线电报与电话所用的热离子管中就取得了重要的实用意义。
阳极射线或原子射线
由上所述,阴极射线是在真空管放电时,自阴极射出的。其对应的、自阳极发出的阳射线,是戈尔茨坦在1886年发现的。观察阳射线的方法是在阳极对面的阴极上穿些小孔,这样在放电时,便有发光的射线经过这些孔,人可以在阴极以外去观察它。维恩(Wien)和汤姆生在1898年先后测量了这种“极隧射线”的磁偏转与电偏转。其e/m的数值表明这种阳射线是由质量与普通原子或分子相近的阳性质点所组成的。
汤姆生在1910年和1911年把阳射线的研究推进了一步。他利用一个高度抽空的大仪器,在阴极装上一个长而细的导管,这样便带到一个很细的射线束,其位置可以在仪器内的照相底片上加以记录。妥善安排磁力与电力,使二者所生的偏转互成直角。由于磁偏转与质点的速度成反比,而电偏转与其速度的平方成反比,如果射线中有速度不同的同类质点,则照片上将呈现抛物线形的曲线。但实际出现的曲线则视仪器中残存气体的性质而定。如气体为氢,则基本曲线所给与的e/m为104或m/e为10-4,与液体电解质中氢离子的数值相等。第二条曲线所给出的值为前者的两倍,即表明有一种氢分子,其质量二倍于负有一个单位的电荷的氢原子的质量。其他元素给出多条抛物线组成的复杂体系。每个元素的m/e 与氢原子的m/e之比,汤姆生称之为“电原子量”。
汤姆生考察氖元素(原子量为20.2)时,发现两条曲线,一条表示原子量为20,另一条表示原子量为22。这说明,普通制备的氖气可能是两种化学性相同而原子量不同的元素的混合物。某些放射现象也说明有这种元素,并且可以给予解释,索迪(Soddy)把它们叫做“同位素”(希腊文τσοτοποs,即在周期表中占同一位置之意)。
汤姆生的实验由阿斯顿(Aston,1877-1945年)加以继续和发展。他用改进的仪器,求得各元素的有规律的“质谱”。这样就证实氛有同位素。氯的原子量为什么是35.46,也是化学家长久所不了解的,至此也证明氯是原子量为35与37的两种氯原子的混合物了。阿斯顿于他种元素也得到相似的结果。如果将氧的原子量定为16,则其他所有已经测验过的元素的原子量,都非常接近整数,差别最大的是氢的原子量,它不是1,而是1.008。这些原子量所以与整数有微小差别,是由于原子核中阴阳二单位体密积在一起的缘故。这个问题还要在后面详细讨论。
这样,阿斯顿就澄清了另一老问题。纽兰兹与门得列耶夫的工作,证明各元素不同的性质与其原子量的陆续增加有某种关系,因而不可避免地说明原子量自身应当形成一个简单顺增的序列。普劳特关于各元素的原子量都是氢原子量的倍数的假说,至此证明接近真实。至于其中的稀微差异,在现代原子论中,既可予以解释,也饶有趣味。
放射性
在柏克勒耳对于铀的放射性质进行了创始的观察以后,跟着便发现铀的射线亦如X射线,能使空气和他种气体产生导电性。钍的化合物也经人发现有类似的性质。1900年,居里(Curie)夫妇进行了有系统的研究,在各种元素与其化合物以及天然物中寻找这种效应。他们发现沥青铀矿与其他几种含铀的矿物,比铀元素本身更为活跃。他们采用化学方法,即按其放射性分离了沥青铀矿的成分。于是三种很活跃的物质,即镭、钋与锕的盐就由几位学者分离出来。其中最活跃的是镭,是居里夫妇与贝蒙特(Bemont)合作而发现的。沥青铀矿中镭的含量极微,许多吨的矿,经过漫长而繁重的工作,仅能分离出一克的极小分数的镭盐。
1899年,蒙特利尔(Montreal)的卢瑟福教授,即以后的剑桥大学教授卢瑟福爵士,发现铀的辐射里有两部分,一部分不能贯穿比1/50毫米更厚的铝片,另一部分则能贯穿约半毫米的铝片,然后,强度就减少一半。前者,卢瑟福叫做α射线,能产生最显著的电效应;而贯穿性较大的一部分叫β射线,能通过不漏光的遮幕,而使照相底片变质。以后又发现第三种更富贯穿性的辐射,称为γ射线,在贯穿一厘米厚的铅片之后,还能照相,并使验电器放电。镭放射所有这三种射线比轴容易得多,与其一般活动性成比例,所以研究这些辐射,也以用镭最为便利。
贯穿性中等的γ射线,容易为磁铁所偏转,而柏克勒耳还发现它们也为电场所偏转。柏克勒耳确凿地证明它们是射出的荷电质点。进一步的研究,证明β射线在一切方面都象阴极射线,虽然其速度约为光速的60至95%,但比已经试验过的任何阴极射线的速度都大,所以B射线就是阴性的微粒或电子。
强度足够使B射线产生相当大的偏转的磁场和电场,并不足以影响很容易被吸收的a射线。虽然在1900年前后,人们已经认为α射线很可能是荷阳电的质点,其质量较组成阴性B射线的质点的质量大,但在若干时期以后,才由实验证明它也能为磁场和电场所偏转,但其方向与β射线偏转的方向相反而已。卢瑟福在1906年对于α射线进行实验,求得其e/m为5.1×103。电解波中氢离子的e/M为104。因为已有证据(见后)表明,α射线是氨的组成物,由此可知α质点是荷有二倍于单价离子的电荷的氦原子(原子量为4)。它们的速度约为光速的1/10。
贯穿性最强的Y射线,不能为磁力或电力所偏转。它们与其他两种射线不是同类的,而和X射线相似,由一种与光同性质的波所组成,其波长经康普顿(A·H.pton)、埃利斯(C.D.Ellis)与迈特纳(Fraulein Meitner)等测量,远比光波为小。它们似乎也象某些X射线一样,含有发射体所特有的各种单色成分。
1900年,威廉·克鲁克斯爵士发现,如果以碳酸氨使铀自其溶液中沉淀,而再溶其沉淀物于过量的试剂中,则所余留的为少量不浓的渣滓。这点渣滓克鲁克斯称为铀…X以照相法试验,异常活动,但再溶解的铀,则无照相效应。柏克勒耳也得到相似的结果:他发现活动的渣滓如果搁置一年,则丧失其活动性,而不活动的铀反恢复其固有的辐射性。
1902年,卢瑟福与索迪发现铁也有相同的效应,即在为氨所沉淀时,钍的活动性,即消失其一部分。滤液蒸干,则产生放射性极强的渣滓。但经过一月,渣滓的活动性丧失,让则恢复其原有的活动性。这种活性的渣滓,钍…X,证明是另外一种化学物质,因为它只能为氨全部分开,别种试剂虽能使钍沉淀,但不能使它与钍…X分离。因此当时断定这些X化合物(未知的化合物)当是另外的个体,不断地由母体发出,而渐渐丧失其活性。
1899年,卢瑟福发现从钍发出的辐射变异无常,尤其易为吹过放射物质表面的空气缓流所影响。他认为这种效应是由于有一种物质放射出的缘故,这种物质的性质好象一种有暂时放射性的重气体。这就是当时所谓的“射气”。这种射气必须与上述以高速度依直线进行的辐射明显分开。射气慢慢地弥散到大气里去,好象挥发性液体的蒸气一般。它的作用象是直行辐射的独立源泉,但随时间的进展,其活动性就变得衰弱起来。镭和锕发出相似的射气,但铀和钍则否。镭射气和氖与氩相似,是一种惰性气体,现在叫做氡。
放射物质所发出的射气为量极小。1904年,拉姆赛与索迪从几分克溴化镭得到一个很小的射气泡。在一般情形下,其量之微,远不足以影响抽空器内的压力;除利用其放射性侦察它之外,也不能用其他方法去侦察它。普通所得到的,是它与大量空气的混合物,只能和空气同时从一器输入他器。
1899年,居里夫妇发现如将一棒暴露在镭射气里,则棒自身也获得放射性质。同年,卢瑟福于钍也得着相同的结果,而且进行了详细的研究。如果将棒自盛有射气的器内取出,而塞入检验简内,则此棒可使简内的气体电离。如将暴露于钍射气而得到放射性的铂丝,用硝酸洗涤,铂丝的放射性不受损失。可是如果用硫酸或盐酸洗涤,其放射性就差不多全部丧失。将酸蒸干则得含有放射性的渣滓。这些结果,表明铂丝的放射性是由