按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
结果显示:可支配国民收入呈着上升达每年6%。失业率下降,在计划期最后一年达到2%。价格水平增长很快,通货膨胀率达5。5%,尽管此时货币供应增长比标准情况要高,但可支配国内收入增加主要是政府费用增加的结果。
此次试验中价值函数中通货膨胀价值参数2倍于高失业率的价值参数,但结果仍是低失业率。高通货膨胀的价格水平的增长率是由于初始的GNP和工资率触发的,要使通货膨胀率回降,应采用更为激烈的财政政策,致使相当长时间里产生高失业率。模型试验表明要在相当长的时间周期里达到低失业率要比达到较低通货膨胀率更容易。
类似地利用最优控制模型还可做更多的政策试验,尽管该模型是一个容量很小而且大大简化的宏观经济模型,但仍然可以帮助我们了解到一个极为复杂的宏观经济系统运行过程中的动态行为特征,并提供了有关稳定政策的许多有益的启示。
第七章 计量经济模型分析
本章主要阐述计量经济模型的整个建模过程,计量经济模型的特点在于首先提出经济假说,然后确立变量之间的因果关系,最后收集统计资料的基础上,估计模型参数,并对其结果进行检验。本章包括计量模型分析的基础和建立计量模型的一些基本方法。首先讨论构成计量分析基础的最小二乘法(OLS :Ordinary Least Squares),然后指出在实证分析中运用OLS估计时应注意的几个问题,最后探讨计量分析的一些新发展。
§7。1 经济模型的最小二乘估计
一﹑OLS估计及其性质
经济变量之间的关系通过数学化的函数来表示,就形成了经济模型。根据观察到的数据对给出的函数关系进行统计分析的方法称为回归分析。假设根据经济理论,变量Yt依赖于k个变量Xit (i =1;2;…k);且Yt和Xit 之间有如下的线性关系成立
Yt =b1X1t +b2X2t +…+bkXkt +ut t=1;2;…;n (1)
例如上述模型中Yt 可以看成货币需求而把Xit 看成GNP、利率、汇率、通货膨胀率。模型中Yt、Xit 分别称为被解释变量和解释变量。另外模型(1)中包含随机误差项ut,简而言之;ut被认为对于Yt的变化Xit不能解释的微小变动的全部,或者说没有在模型中明确表示的所有影响Yt因素的总和。如果ut=0,Yt成为Xit的线性函数,但是Yt一般同随机误差项ut有关,由于ut是未知回归平面同观测值Yt的差,实际上我们无法得到ut的真正数据,即使这样它在模型中起的作用是任何其它变量所不能替代的,可以说随机误差项的引进才使得经济模型的识别成为了可能。回归分析是指根据观察数据,求得模型中参数bi的估计值,同时检验Yt和Xit的关系是否的确如(1)所假设线性关系的整个过程。
考虑未知参数的函数
求出参数(b1;b2…bk)的估计量(b1;b2…bk)使上述函数|(b1;b2…bk)达到最小值的方法称为最小二乘方法。本章中设X1t =1;主要是为了考虑包括常数项的模型。如果引进向量和矩阵符号可以把(1)写成矩阵表达形式。
Y=Xb+U (3)
其中Y=(Y1;Y2;…Yn)T
b=(b1;b2;…bk)T
U=(u1;u2;…un)T
平方和的函数形式(2)变成向量的内积形式
|(b)=(Y-Xb)T(Y-Xb) (4)
根据矩阵函数的求导法则和微分学中求极值的方法可知,要使(4)达到极小值,参数的估计量应满足条件:
即
XTXb=XTY
容易得到
b=(XTX)…1XTY
b称为b的最小二乘估计, =Xb称为估计回归平面,注意到为求出OLS估计用到了(XTX)…1存在的条件。为了使OLS估计b具有统计上一些重要的性质,对于模型(3)有必要做出如下的假定:
1)误差项ut的期望为0,即E(ut)=0 (t=1;2;…n)
2)不同时点的误差项之间不相关,即E(utus)=0 (t1s;t;s=1;2; …n)
3)ut的方差和t无关,即Var(ut)=s2 (t=1;2;…n)
4)Xit为确定性变量,即E(Xitut)=0
5)由X的列向量构成的向量组线性无关,即r(X)=k ……,这表明距离现在越近,影响也就越大。把bi代入(13)式,得出
Ct =a+b(1…l) Yt+b(1…l)l Yt…1+b(1…l)l2 Yt…2+ …… (14)
用l乘次Ct…1可得
l Ct…1=la + b(1…l)l Yt…1+b(1…l)l2 Yt…2+ …… (15)
(14)…(15)给出
Ct …l Ct…1 = a (1…l)+b(1…l) Yt (16)
即
Ct=a (1…l)+b(1…l) Yt+l Ct…1 (17)
Brown消费函数本质上是考虑了消费习惯影响到本期的消费,从模型中可以看出,短期MPC(边际消费倾向)为b(1…l),长期MPC为b。
利用表9。1的数据,Brown消费函数的估计结果由下面的(18)式给出
C=…74。38+0。6095Y/CP+0。3706C(…1) (18)
(…1。02) (5。44) (2。88)
R2=0。997 S=131 F(2;16)=2291 DW=1。78
如果考虑在Brown消费模型的基础上在增加一个解释变量实际储蓄存款利率(一年期利率),我们得到以下结果:
C=…8。894+0。4839Y/CP+0。5064C(…1) … 9。683R … 295。4D1 (19)
(…0。125) (4。29) (3。95) (…1。73) (…2。18)
R2=0。997 S=118 F(4;14)=1427 DW=1。76
(19) 式中的变量D1称为虚拟变量,它刻画了1989年物价的急剧波动。
从上面3种不同形式的消费函数的估计结果来看,回归模型中参数的符号及大小不仅和经济理论相吻合,而且参数的估计值在统计上有意义。3种模型中的长期MPC分别为0。93、0。97、0。98,在数值上没有发生明显的变化。这种高MPC反映了中国城市居民在此期间的消费特点,我们注意到1965年…1985年间的美国、德国(西德)、法国的宏观消费函数中的MPC都在0。9以上。考虑到MPC和投资乘数的关系,从投资乘数M=1/(1…MPC);可以得到在高MPC的情况下,投资乘数的效果增加。但是,应该注意的是,随着近年我国居民收入结构的改变和各种金融证券市场的日趋繁荣,消费函数中应考虑加入金融资产和隐性收入等变量,这样更能够说明城市居民的消费状况。
§7。2 计量模型分析中的诸问题
在第1节中看到模型中误差项ut的诸假设对于OLS估计具有blue性质至关重要,特别是如果ut关于方差一定和不相关的假定不成立时,OLS估计不再是有效的(即OLS估计的方差不再是最小的)。本节主要讨论这些假定不成立时,如何采取适当的对策或者如何对估计方法进行修正。
一﹑序列相关(autocorrelation)
对经济数据进行计量分析时,经常发生的问题是ut不满足E(utus)=0 (t1s; t;s=1;2;…;n)的假定条件,即误差项之间存在着序列相关性。产生这种相关的原因一般有以下两个方面:
1)模型设定的偏误。例如模型中丢掉了某个重要的解释变量。
2)经济行为的惯性。例如考虑消费函数模型Yt=a+bXt+ut,其中Xt为收入,Yt为消费,ut为除去收入之外影响消费的所有因素之和。如果收入之外的要素发生变化时,显然通过ut会对t期的消费Yt产生影响,通常这种影响要延续到下一期或者下几期的消费,这是因为经济活动尤其是消费行为并不一定是本期内完结的,在这种情况下,产生正的序列相关是显然的。经济变量一个显著特点是大多数都具有惯性或滞后性,尤其在经济时间序列的分析中,这种特点更加明显进而产生了序列相关性。
对于模型估计,序列相关存在的主要后果是:虽然OLS估计具有线性无偏性,但失去最小方差性,而且序列正相关时,参数估计的标准差相对于实际的估计值过小估计,导致t值过大,容易造成拒绝H0过度频繁出现,假回归的危险性增大进而产生使人们对模型的参数估计值过度信赖的假象。
众所周知,计量模型中误差项的相关模式绝大部分遇到的是具有以下的一阶自相关形式:
ut=rut…1+et (20)
其中et满足模型(3)中假设的1)、2)、3)和6),这种形式的模型称为一阶自回归模型(first…order autoregressive)记为AR(1)。模型(20)是一种在经济分析中非常重要的自相关模型,理由在于首先这种自相关模型代表了实证分析中大多数误差项自相关的形式,并且由于它的特殊性,简单性和实用性,一般情况下在实证分析中不考虑误差项之间存在的高阶相关的情况,主要是处理起来比较困难的原因。
通过模型(20)可知,如果r10表示ut之间存在自相关,r=0表示ut之间不存在自相关。作为检验序列相关是否存在的方法,可以考虑以下的假设检验。
H0:r=0
由于残差表现了误差项的行为,考虑下式给出的r的估计
(21)
可以看成et和et…1 之间的相关系数,实际为et对et…1作回归的系数估计。当ê ú的值较大时,可认为误差序列中存在一阶自相关性。
Durbin;J和Waston;G。S (DW)基于et和et…1之间的相关系数 提出了检验r的d统计量
(22)
通过简单的推导有下面的近似关系成立:
d〃2(1- ) (23)
考虑到r的取值范围,可以得到如下的结果
(24)
表明d的值约等于2时,误差序列不相关,d接近于4时,序列呈负相关关系,d接近于0时,序列呈正相关关系。一般利用 构成的d取值范围在0~4之间,从d的定义看到它依存残差向量e,而e=MU,虽然E(e)=0,但是E(eeT)=E(MUUTM)=Ms2;一般情况下e的分布依赖于X,这导致d的分布亦依赖于X,使得直接利用d的分布进行检验变得非常困难(虽然给定解释变量X后求d的分布也不是一件容易的事)。为了回避上述难题,DW考虑了不依赖于解释变量取值的d统计量的上界(du)和下界(dl)。为了检验模型(20)中
〃H0:r=0 对立H1:r》0〃
DW对显著水平0。05,0。01和不同的样本容量及解释变量个数,给出了统计检验表(可查阅参考文献Johnston'15';Maddala'18')。
如果ddu,接受H0;
如果dl£d£du,不能确定。
对于〃H0:r=0 对立H1:r