按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
毕竟植物和动物已经自我繁衍了几十亿年了,在生物化学这个层次上,动植物不过像星
球一样遵循着同样的自然规律。但这一事实并不能给予他很大的帮助。生物的自我繁衍
极其复杂,包括基因、性、精子和卵子的结合、细胞分裂和胚胎发育,更别说具体而详
细的蛋白和DNA的分子化学了,这些在四十年代几乎完全不为人们所了解。而机器则显
然没那么复杂。所以,冯·诺意曼在能够回答关于机器的自我繁衍的问题之前,他必须
将这个过程简化至其本质,其抽象的逻辑形式。也就是说,他必须在头脑中形成编程员
在许多年以后建造虚拟机器时的那种概念:他必须撇开具体的生物化学机器,找出自我
繁衍的重要特点之所在。
为了找到对这些问题的感觉,冯·诺意曼先做了一个思维实验。他说,想象一台机
器飘浮于一个池塘的水面,这个池塘里还有许多机器的零部件。接着,再想象这台机器
是一个宇宙建设者:只要给出任何一台机器的描述,这台机器就能在池塘中一直划到寻
找到制造机器所需要的合适的零部件,然后就制造出了这台机器。特别是,如果向它描
述一下它自己,他就能够复制出自己来。
冯·诺意曼说,这听起来像自我繁衍了。但却还不是,起码,还不完全是。新复制
出来的机器的零部件全都很合适,但它不会描述自己,这意味着它不可能继续拷贝自己。
所以冯·诺意曼同时也假定,最初的机器应该具有一个描述复印机:即对下一代机器的
复制性描述。他说,一旦发生这种情况,下一代就具有了无穷无尽进行繁衍的条件。然
后就有了自我繁衍。
冯·诺意曼对自我繁衍的分析作为思维实验来说是非常简单的。如果我们用更正式
一点儿的方式重申的话,冯·诺意曼说的是,任何自我繁衍系统的基因材料,无论是自
然的还是人工的,都必须具有两个不同的基本功能。一方面,它必须起到计算机程序的
作用,是一种在繁衍下一代的过程中能够运行的算法。另一方面,它必须起到被动数据
的作用,是一个能够复制和传给下一代的描述。
这个分析结果变成了一个令人震惊的科学预测:几年以后的1953年,华生和克拉克
终于拆解开了DNA的分子结构之谜。他们发现这个结构正好完全具备冯·诺意曼所指出
的两个基本要求。作为一个基因程序,DNA编入了制造细胞所需要的酶和结构蛋白的指
令,作为一个基因数据仓库,DNA的双螺旋结构在每次细胞分裂为二时都能解开和自我
复制。进化以令人羡慕的节俭方式将基因材料的这种双重本质嵌入了DNA分子本身的结
构之中。
但还有其他的情况。当时冯·诺意曼知道,光有思维实验是不够的。他的关于在一
个池塘里的自我繁衍机器的想象仍然太具体,与过程的具体材料绑得太紧了。作为一个
数学家,他需要非常正式和完全抽象的理论。结果就有了后来被称为“分子自动机”这
个形式的理论。这是他的同事,住在罗沙拉莫斯的波兰数学家斯坦尼斯劳斯·乌兰建议
的。乌兰自己也一直在思考这些问题。
乌兰建议的是约翰·康卫二十多年前发明生命游戏时所用的框架。确实,康卫当时
非常清楚,生命游戏只不过是分子自动机的一个特例。乌兰对冯·诺意曼的建议是,最
根本的是要想象一个可编程的宇宙。在这个宇宙中,“时间”被定义为宇宙之钟的滴答
声,“空间”被定义为一个个分离的细胞格。每一个细胞都是一个极为简单的、定义抽
象的计算机,一个有限的自动机。在任何一个时间和任何一个细胞中,自动机都会只存
在于无限状态中的唯一一种状态中,它可以被想象成是红的、白的、蓝的、绿的、黄的,
或1、2、3、4,或死的、活的,或不管什么。而且,宇宙之钟每滴答一次,自动机就会
转入一种新的状态,这种新的状态是根据其当前的状态以及其邻居当前的状态所决定的。
宇宙的“物理规律”因此就会被编入其转换表内:就是能够告诉每一个自动机根据其邻
居可能转换的状态做出改变。
冯·诺意曼喜爱这个分子自动机的概念。这个系统简单抽象到能够进行数学分析,
但又能丰富多采到足以使他能抓住他正尽力想弄明白的过程。而且这又正好是一个你可
以实际在一台计算机上模拟的系统。起码从原则上来说是可以这么做的。1954年,冯·
诺意曼死于癌症,未能完成他对细胞自动机的研究,但应邀编辑冯·诺意曼在这项研究
上的所有论文的勃克斯后来编辑了他的成果,并填补了冯·诺意曼尚末来得及完成的细
节,于1966年以《自我繁衍自动机理论》为名结集出版。该书的要点之一是,冯·诺意
曼证明了起码有一种确实能够自我繁衍的分子自动机模型的存在。他发现的这个模型极
其复杂,要求大量的细胞格,而且每一个细胞有二十九种不同的状态。这是任何现有计
算机的模仿功能都无法胜任的。但这种自动机确实存在的事实回答了根本的原则问题:
一旦将自我繁衍看作是有生命的物体的独一无二的特征,那就能让机器也做到这一点。
朗顿说,当他读到所有这一切时,“他突然感到自信心大增。我知道我的思路没有
错。”他返回到他的苹果二型计算机上来,很快编写出了一个一般性功能的分子自动机
程序。这个程序能够使他在屏幕上观察彩色方块格的分子世界。苹果机只有64千字节分
存储量意味着,他只能把每个分子的状态限制在不超过八种,根本达不到冯·诺意曼的
二十九种自我繁衍状态的要求,但却仍然有在这种限制下找到一个自我繁衍系统的可能
性。朗顿运行了他编的程序,以此来尝试他想要的任何状态和任何转变表。他的程序中
的每一个细胞都有八种状态,这样他就只能得到十的三万次方的不同基因表的可能性。
他着手尝试。
朗顿早就知道,他的探索并不像表面看上去那样毫无希望。他在阅读中发现,泰德
·考德(Ted C0dd)已经在十多年前就发现了一种具有8种自我繁衍状态的模型。那时
泰德·考德在密西根大学读研究生,在一个叫作约翰·荷兰德的家伙手下干活。由于考
德的类型对苹果二型机来说仍然太复杂了,朗顿就想,也许通过对付这个模型的各个部
分,他能够在这种限制下找到比较简单的操作方法。
朗顿说:“考德的自我繁衍状态的所有部件都像是数据途径。”那就是,考德的系
统八种状态中的四种起的是数据的作用,另外四种状态起到各种辅助作用。特别是,一
种状态起导体作用,另一种状态起绝缘体作用,这样共同组成让数据能够在细胞之间流
动的渠道,就好像铜线一样。所以朗顿从考德的“周期性发射体”结构开始入手:这基
本上就是一个回路,有一位数据就像钟表的分针一样在其间不断转圈,同时,回路的侧
面长出某种手臂,周期性地发射出在回路中绕圈的数据的复制品。然后朗顿就开始模拟
这个发射体,在其手臂上扣了顶帽子,这样信号就不会跑掉了,他用加上第二个环绕信
号的方式来做这顶帽子,并把规则表扭曲过来,让它永远这样。他知道,如果他能使手
臂伸出去,再向里弯过来,形成和第一个一样的回路,他就算做成功了。
这个实验进展得非常缓慢,朗顿每夜只工作很少几个小时,他妻子爱尔维拉已经尽
力耐住性子了。朗顿说:“她关心我所感兴趣的事和我认为会发生的事,但她更关心的
是:我们该怎么办?我所做的这些能给我们带来什么结果?这些事对目前家庭状况的进
展会起到什么作用?这两年我们会在哪里?而这很难解释。你已经做了所有这一切,而
你所做的这一切又会怎么样呢?我并不知道,我只知道这很重要。”
朗顿只能坚持不断努力。“我不断在这儿取得一点儿进展、在那儿取得一点儿进展。
我先开始制定规则,然后完善它,再完善它,然后就把我自己逼到了死角。保留的规则
表灌满了十五张软盘,这样我就可以在备份后再从另一个角度开始。所以我不得不非常
小心地记录什么规则产生什么样的行为,改变了什么,我又备份了些什么,在哪一张软
盘上做的备份。”
从他最初读到冯·诺意曼到他最终得到他所想要的结果,一共花了两个月左右的时
间。他说,有一天晚上,所有的部分终于汇聚到了一起。他坐在那里看着那些回路伸出
手臂,又弯过来,形成新的、与前一个同样的回路,然后又继续形成更多的一模一样的
回路,这样无限继续下去,就好像生长着的珊瑚礁。他创造出了目前最简单的自我繁衍
分子自动机。“我激动得就像感情火山爆发。这是可能的,它真的发生了。这是真的。
现在进化具有了意义。这不是外部程序操纵表格的结果。这是自闭的,其生物体本身就
是程序。它是一个完整的体系。我一直在思索的这些事,一直觉得如果我尝试就有可能
证实的这些事,现在已经证明了是可能的。这就像可能性的一次塌方,像推倒了多米诺
骨牌,然后骨牌就不断倒下,不断倒下,一直倒下去。”
混沌的边缘
朗顿说:“我的性格中有机械师的倾向,我总是想摆弄点什么,把它们组合起来,
看到它运作。一旦我真地拼成了某东西,任何疑虑就会随之消失。我可以看到人工生命
从这儿开始。”他非常清楚:既然他现在已经诞生了细胞自动化世界的自我繁衍机制,
他就得进一步要求这些模型在自我复制前能够执行某种任务,比如像找到足够的能源,
或一定数额的合适的组合部件。他必须建立很多这类的模型,这样它们之间就能相互为
争夺资源而展开竞争。他必须使它们具有四处周游、相互感觉的能力。他必须允许各种
变化的可能性,允许在繁衍中出现错误。“所有这些都是需要解决的问题。但现在一切
都还不错。我知道我能够在冯·诺意曼的世界里嵌入进化的机制。”
朗顿在获得了这个自我繁衍的分子自动机后,就重返校园,开始了另一轮的努力,
力争获得攻读跨学科的博士学位的支持。他会指着屏幕上不断展现的结构告诉人们:
“这就是我想研究的。”
但仍然不成功。他得到的反馈比最初还要冷淡。他说:“到了这个阶段,有太多的
东西需要向人们解释。但人类学系的人不了解计算和周期,更别提分子自动机了。‘这
和录像的把戏有什么区别吗?’他们问。而计算机科学系的人对分子自动机也一无所知,
对生物学也没有丝毫兴趣。‘自我繁衍和计算机科学有什么相干吗?’他们问。所以,
当你力图描绘整幅图景时,嘿,你在人们眼中就会像一个不折不扣的、喋喋不休的白
痴。”
“但我知道我没有疯,”他说。“现在我觉得我的神志非常正常,比别人还要正常。
事实上,我担心的正是这一点。我相信疯子都会有这种感觉。”但不管朗顿的神志是否
正常,他在亚利桑那明显没有取得任何进展,是另寻出路的时候了。
朗顿写信给他以前的哲学导师,现在已经转到匹兹堡大学任教的韦斯利·塞尔蒙,
问道:“我该怎么办?”塞尔蒙在回信中提出了他太太的建议:“去向勃克斯求教。”
勃克斯?“我以为他已经过世了呢。他这个年代走过来的绝大多数人都已经过世
了。”朗顿说。但勃克斯却在密西根大学活得十分健康。而且,当朗顿开始和勃克斯通
信后,勃克斯就给予了他很大的支持,甚至安排他争取获得助教和助理研究员的经济资
助。你提出申请吧,他写道。
朗顿立刻就提出了申请。那时他已经得知,密西根大学的计算机与通讯科学研究在
他所追求的研究领域中享有盛名。朗顿说:“对他们来说,信息处理是可以跨越一切的
学科,无论怎样的信息处理方式都值得研究。我就是冲着这一思想而申请去那儿的。”
不久以后,他收到了系主任吉顿·佛莱德(GideonFrieder)教授的来信。他在信
中写道:“很抱歉,你的背景不合适。”他的申请没有被接受。
朗顿火冒三丈。他写了一封长达七页的信给予反击。这封信的主要意思是,你们搞
的什么鬼!?“这是你们声称自己生存和呼吸与共的整个哲学和目的,这也正是我所追
求的。而你们又对我说不?”
几个星期以后,佛莱德又给朗顿回了一封信,其大意是:“欢迎来我系。”他后来
告诉朗顿:“我就是喜欢周围有人敢对系主任说‘不’。”
事实上,朗顿后来才知道,事情比这要复杂得多。勃克斯和荷兰德甚至都没有看见
他最初的申请。由于各种官僚和财政的原因,这个花了三十年才形成的涉猎广泛的计算
机与通讯科学系正要合并到电机工程系中去。而电机系的人对研究课题的看法要实际得
多。这种预期使佛莱德和其他人正在淡化像“适应性计算机科学”这样的研究。勃克斯
和荷兰德正在进行一场后卫战斗。
但不管朗顿幸运与否,他当时并不知晓这些。他只是对能被接受感到高兴。“我不
能失去这个机会,特别是当我已经知道我做的没错的时候。”爱尔维拉也愿意他一试。
确实,这样做她就必须放弃她在亚利桑那大学的工作,而且也远离了她在亚利桑那的娘
家。但考虑到自己已经怀上了第一胎,她觉得能够利用朗顿的学生健康保险也不错。另
外,尽管他们俩都喜欢西南部的气候,但觉得时不时看到密西根的乌云也蛮有意思。所
以1982年秋天,他们启程北上。
起码在知识上,朗顿在密西根大学收获颇丰。他作为勃克斯的计算机史课程的助教,
汲取了勃克斯亲历的早期计算机发展史料,协助勃克斯收集和展出了ENIAC机的一些最
初期的硬件。他遇见了约翰·荷兰德,为荷兰德的集成电路课设计和开发了能够极快地
执行荷兰德的分类者系统的芯片。
但大多数时间朗顿像疯了一样学习。正规语言理论、计算机复杂理论、数据结构、
编辑构建,他系统地学习以前涉猎过的零星知识。他乐此不疲地学习。勃克斯、荷兰德
和别的教授都要求甚严。朗顿在密西根大学期间,知道在一次博士资格面试中,他们几
乎给所有考生都打了不及格,不予转入博士候选人资格(失败者当然还有机会)。“他
们会问你课程之外的问题,你必须做出聪明的回答。我真的非常喜欢这种学习方式。仅
仅只是通过了考试与真正掌握了书本知识是很不相同的。”
但在学术政治领域,事情就没那么尽人意了。1984年年底,当朗顿结束了课程,获
得了硕士学位,通过了博士资格考试,正准备开始撰写博士论文时,他痛苦地发现,校
方不同意他想基于冯·诺意曼世界之上进行人工生命的进化研究。勤克斯和荷兰德的后
卫战以失败告终。1984年,过去的计算机与通讯科学系被并入了电机工程学院。在以电
机工程文化为主的新的环境中,勃克斯-荷兰德式的“自然系统”课程遭到逐步淘汰。
(这种情况以前和现在一直是使荷兰德真正感到愤怒的少数几件事之一。他最初曾经是
最赞同合并的人之一,相信自然系统的研究视角会被保留下来,而现在他感到好像被吞
食掉了。确实,当时的这种状况使荷兰德对参与桑塔费活动产生了更大的积极性。)但
勃克斯和荷兰德的勇猛精神使他们俩鼓励朗顿从事生物学性较淡些,而计算机科学性更
强一些的博士课题研究。朗顿承认,从实际的角度考虑,他们确实言之有理。“那时我
已经有了长足的见识,很明白冯·诺意曼的宇宙是一个极其难以建立并投入运作的系统。
所以我开始寻求某种在一、两年中可以完成的研究课题,而不是要花几十年才能完成的
课题。”
他想,与其去建立一个完整的冯·诺意曼式的宇宙,为什么不能只对其“物理学”
做一点儿研究呢?为何不能研究一下为什么某些分子自动机规则表允许你建立很有意义
的结构,而另外一些却不能呢?这起码是朝着自己的方向迈进了一步。这项研究也许既
能满足计算机科学的硬性规定,又能满足工程学的要求。无论如何,它都可能产生与真
正的物理学的某种有趣的关联。确实,分子自动机与物理之间的关联后来变成一个热门
学科。1984年,物理学界的天才史蒂芬·伍尔弗雷姆在加州理工学院时就指出,分子自
动机不仅包含了丰富多采的数学结构,而且与非线性动力学有着深刻的相似性。
朗顿发现特别吸引他的是,伍尔弗雷姆认为,所