友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八万小说网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

结构设计杂谈-第2部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!





  结构分析中如何实现概念设计
目前可能使用高阶杆元和子结构的理论,同时能够较好的使用主从节点的功能,这是能最好的发挥杆元的灵活性和抽象代表性。 
  结构设计的三种泛式(或者说类型或者是模式):①验算式设计。假定某种结构形式,定义好精确的荷载工况,借助软件进行重复的验算或者进行某种程度的优化。这是现在最常见的形式,某种意义上也是最有效的形式。②概念式设计。林大师的杰作。设计时的思路是将整体结构看作一个整体,然后按整体性假设对分层次的竖向和水平分体系提出要求,分体系存在的唯一意义就是要满足某种更宏观的作用。这种思路在具体构件和接点的设计中也可以使用。这种设计关注的重点是整体…部分的比例关系以及其几何特性。其更重视空间几何特性而不是抽象的数学运算,寻求在概念上解决最关键的问题。③预应力设计。在第二种设设计范型中,设计者认识到结构的空间特性的极端重要性,用力学的术语来说就是结构的刚度的组成方法。设计者通过寻求某种最有效的结构空间构成来达到某种最有效的空间刚度构成。使用预应力方法的设计者意识到刚度不仅是构件空间构成形式的函数而且也是构件内力的函数,即所谓的几何刚度。可以有意识的使用高强钢材并在构件体系中施加初始应力提供并利用这种刚度,例如拉索桁架和斜拉索桥。使用预应力的方法是一种主动设计,但应注意在钢结构和混凝土中的应用是不同的。预应力对混凝土的改性是本质的,可以将其视为弹性材料。但刚度还主要是由混凝土截面的几何刚度提供的。在索桁架中其整体刚度是由索的拉力提供的。在张弦梁或者张弦桁架中,具有张力的上下弦提供了附加的几何刚度?还是其仍然可看作是用原来的由截面计算出来的刚度。一个问题是:有没有某种通用的简化算法来估算内力对几何刚度的影响以及如何对整体的行为进行评估。 
1)模型的简化工作通常都是结构工程师是在建模之前根据自己的经验和对结构概念的理解事先进行判断后进行的,是非常主观的一个经验性的过程。通常程序在这里没有办法帮助。如果设计者事先按某种情况作出一最复杂最逼真的三维空间模型,包括所有的构件和连接,然后将相应的构件分组,程序来考虑构件的刚度对总刚的影响,对总刚影响大的保留。或者加载后看能量的吸收,对能量吸收大的保留。最后的分析模型只保留最主要的结构分体系。这是进行分层次设计的一个关键。模型必须体现层次结构。如果不清楚层次结构,可以通过上面的方法进行判定(手工)。单元生死或者失效构件等等。 
  2)对分析结果的验证问题。在手算阶段,工程师通过一些简单而直关的方法对分析结果的正确性进行判定。在通用分析软件中应该使用某种更通用的方法来进行判断。对模型正确性和结果的验证应该成为结构软件的一个标准配置,但通常在这里都被大家忽视了。例如,可以通过能量的方法计算外界功是否等于总应变能,同时进行进行外界总荷载等于总支座反力,检查模型的几何问题(例如重复构件,重复节点)。模型的空间几何不变性,这应该是最为重要的一个检查。模型本身正确性的检查,分为约束、荷载与刚度(材料弹模与几何刚度的乘积)。一方面从模型本身的组成信息去检查,一方面从计算结果去检查,最好还能给工程师提供某种进行概念判断的框架。 
  3)高阶杆元,子结构,主从节点,能量守恒原理,瑞利法的综合使用是进行概念设计的目前最有利的武器。利用该方法可以实现所谓C++中定义新类型的功能(一种新的超级杆元)。但使用的分析原理仍然是成熟的有限元的理论,就好象C++仍然是使用的C内存模型。该方法在计算的效率上能否提高呢?应该能,根据计算的平方定律可有效的减少,而且和系统的嵌套程度有关。这样做的话,所造成的直接后果是所谓的精度的丢失,但用在设计中有可能是更好的结果。其最基本的参数就是几何尺寸的概念。 
  4)规范对任意的结构构件都规定了很多的检验条款,拿钢结构来说通常可包括强度、刚度与稳定。表面上看来,这些条款之间似乎没有联系,但是有经验的结构工程师能够发现针对常用构件这些条款的控制顺序。拿梁来说,经过简单的推导我们就可以得出结论:通常牌号的连续或简支梁如果满足某种跨高比(例如13对Q345或15对Q235)则可保证在满足强度的情况下挠度一定满足设计。如果是连续的Q235梁则可以肯定挠度肯定不会比强度控制设计。简支的钢梁通常做成组合的,所以一般也不会控制设计。在另一情况下,例如悬臂梁,无论是端部加集中荷载或整个的均布荷载,均需非常小心的验算其挠度。使用该方法可以得出挠度和强度“等稳”的设计。条款之间的内在联系也体现在其他方面,例如强度和稳定。强度和稳定通常没有上述如此紧密的联系。但对钢结构而言,通常可以断定稳定会控制设计。在设计实践中除非构件有比较大的截面空洞削弱导致静截面面积下降太多,否则强度不会比稳定控制设计的。可以根据结构的布置形式和构件的几何尺寸推出稳定不控制设计的几何要求,例如压杆控制长细比,压弯构件只有在整体模型中才能考察,主要是长细比和是否有侧移等。如果是无侧移的柱并能控制长细比,则可以保证柱的稳定不会比强度控制设计。在通常的钢结构设计校验中,查看应力即强度值再配合以结构的几何构造要求往往就能基本定量的作出设计了。这种思路可以进行推广,即我们进行构件安全性的判断时如果能有意识的注意到构件验算条款之间的内在联系将会是非常有用的。对整体的模型来说,整体的刚度是最关键的因素,结构的变形和承载力是有其内在联系的。 
     限制梁的跨高比除了满足变形要求外,还可以加大刚度,对有明显振动的构件来说,需要控制其频率和振幅,而加大截面刚度是最直接的方法。 
  5)学习的思路是从具体到抽象,从特殊到一般,而应用的思路正好相反。而且一般来说学习和应用的过程是不能截然分开的。应用是更高阶段的学习。在林同炎的《结构概念和体系》中讲述问题的思路是一种应用的思路,所以会对新手比较难适应,但对设计人员却相当合适。如果说能适当的补充第一阶段的内容的话(即从具体到抽象从特殊到一般以及从局部到整体)则就更全面了。但就认识论而眼,在应用阶段会发现新的现象和事实,用现有的概念不能很好的解释,那么这个时候就又要重复从感性认识到理性认识的过程了。这个过程进行的越多,对事物(在这里是结构设计)的理解就越深刻了。 
  6)物理好的人通常数学不差。数学形式推理能力强的人,物理并不一定好。这种人很容易陷进形式化的陷阱。Wilson在他的结构书中特别强调结构分析的物理意义,大概也就是看到了现在结构分析领域中的不好的趋势。在第14章开头部分写道:“要计算振型(或特征向量与特征值)的主要原因是用它们来解耦动力平衡方程以进行振型叠加及/或反应谱分析。结构的动力响应分析的主要目的是要精确的估算实际结构中的位移和构件内力。一般来说,特征值及特征向量的准确度与节点位移和构件内力的准确度之间没有直接联系!”据此,Wilson提出与荷载相关的Ritz向量分析,与所谓的精确特征向量法比较,LDR能用更少的计算工作量产生更精确的结果。就象Bjarne所说的,最快的代码就是没有代码。尽量减少对中间环节的依赖而一步到位才是最高效的方法。这只有借助常识与物理直觉才能达到。为了达到最有效的设计目的,就要尽量减少中间环节的依赖。 
  7)通过各个环节的严格执行来得到精确的构件分析结果(每个构件的精确内力和节点位移)对结构的整体安全评估来说还远远不够。最关键的是我们缺乏一种有效的逻辑体系与方法来指导我们如何来利用这些分散的分析结果数据。这个角色应该由规范扮演但演的不好。 
说了半天。其实就是说整体到局部的设计。结构布置怎么影响刚度的问题。








杂  谈
  伽利略提出了决定光速的问题,但是却没有解决它。提出一个问题往往比解决一个问题更重要,因为解决一个问题也许仅是一个数学上的或实验上的技能而已。而提出新的问题,新的可能性,从新的角度去看旧的问题,却需要有创造性的想象力,而且标志着科学的真正进步。惯性原理、能量守恒定律,都只是运用新的和独创的思想去对付已经熟知的实验和现象所得来的。在本书的后续篇幅中,我们还将看到很多这样的例子,其中特别着重用新的观点来研究已知的情况的重要性,或者用一种新的方式来组织并描述一些”旧”的理论;即所谓体系的创新;虽然内容本身并没有大的变化;但从形式上看更有
逻辑性同时也更容易从物理上理解了。
  “窃意以为几何之本,其真伪实非人类心智所能证明,亦非人类心智所能理解者,余意于此,日久迩坚。此等空间之属性,莫测高深,后之来者,或有灼见,得窥堂奥。惟今之世,吾辈宜视几何学与纯先验之算术为殊途,宜彼与力学并列也。” C。 F。 高斯 (1817)
  为什么有限元的方法这么有用?有限元的思想代表了场论的最基本的思想。作用不是超距的,只能在第一时间影响自己的一个无限小的邻域,然后将作用象波一样的扩散出去。如果需要扩散,就必须知道扩散的路径。通常的杆限制了一条空间曲线路径,这个路径是只有长度的概念,而通常的板和壳是一条空间曲面路径,这个路径只有面积的概念,是二维的。而通常的块元就是三维路径了。如何才能以最快的速度扩散出去;这要求荷载的传递路径最简洁;高效;什么样的拓扑构造才能保证传递的过程最稳定;这些都是结构设计中最最要命的问题。有限元法突出体现了用线性近似去逼近实际的非线性情况(线性的单元模拟非线性的实体),用离散去逼近连续(离散的点质量和点刚度模拟固体连续的质量和刚度),用正交分解后的部分的和去模拟整体(轴力与弯矩),用有限去逼近无限,这些辨证的方法都体现在有限元理论中,这是这种方法的的威力的原因。另外一点就是在数值处理上此种方式有可能是效率最高的方式,因此也是最实用的方式了。
  陈省身说:“我相信,向量丛、联络和曲率等概念是如此基本而又如此简单,以至任何多元分析的入门教科书都应包括这些概念”
  改写弹性力学理论的几个观点:1)将弹力与结力和材料力学以及弹性稳定理论结合起来论述,设计者能以不同力学观点进行实际设计将非常难能可贵。突出梁…拱…板…壳的内在联系,突出几门传统上不同学科的内在联系。并且将这些论述置于更大的物理和数学背景下。例如空间场方程的一般处理方法。2)结合数值计算,突出抽象性,物理上的中心概念是抽象刚度,数学上的中心概念是曲率,曲率和轴力的乘积是几何刚度(也很抽象)。通常对板和梁的刚度与厚度的定义过于直接简单,应推广到具有各向异性的弹性片。将通常应力求解的问题改为用弯矩求解,包容性更强。
  不要忽视所谓“初等问题”。一般来说“初等问题”往往就是基本问题,往往也就是在理论上最重要而在实践中应用最广泛的问题。例如结构力学和材料力学和弹性力学比较,似乎显得初等些,但却最实用。这里面有深刻的道理。
很多人鼓吹对计算模型不要进行太多的简化,认为没有必要“挖空心思”进行简化。实际上简化本身不是目的,而是为了更好的处理复杂系统。从某种意义上说,我们使用的力学是简化的,物理学是理想化的。甚至对数学来说,他的一些关键概念,例如连续、可微、正则等等,都是理想化的,也就是说是简化的。例如微分就是求函数的线性主部;这也是非常关键的简化手段。简化的主要目的是要抓住主要矛盾,知道在不同的设计阶段如何处理最主要的问题,而将一些枝节的问题暂时抛开。
这是一个方法论,而不是一种个人的喜好。不论我们是否喜欢;为了能够在可接受的代价内作出真正有实际意义的工作;我们都必须作出某种程度的简化。任何所谓的“精确”计算模型都进行了某种程度的或多或少的简化,例如荷载、边界条件甚至使用的计算理论也都是某种简化的。
设计师的简化本领是一种修炼,是一种基本功,是一种对结构本质的体验,失去了这个本领,就不能称为是一个真正的结构工程师了。理论上说;杆元和板元做的模型都能用块元完成;为什么不用块元计算所有的一切而要用板元与杆元进行模拟呢?分析的结果的精准和设计没有必然的关系。
以直梁来说,凡是长度尺度比宽、高大一个数量级的都可看成“梁”体系,如果整体上具有曲率且支座约束平动,则是“拱”体系。梁弯曲时的平截面假定以及梁受扭时的刚周边假定是实现整体性的几何条件,实现该几何条件的关键物理构造就是纵、横向的抗剪系统。将这种概念进行推广,则二维的平面系统或壳是比直梁更高一级的概念体系。
  用离散结构实现连续的概念这样做有什么意义呢?1)具有整体性的结构系统往往是最优的。2)不具有整体性的结构系统往往具有致命的构造缺陷。3)因为具有整体性,所以可以使用材力或弹力里面的经典理论结果来进行估算,效率得到了极大的提高,这实际上就是林同炎概念设计的方法。
  结构的几何刚度和结构的物理刚度是一对矛盾,弹性稳定理论主要是处理这对矛盾的。梁、拱、板、壳以及使用离散构件实现的任何实体都有该稳定问题。但使用弹性稳定理论处理时既要注意其几何上的特殊性,又要注意其共性。例如具有曲率的拱的稳定和欧拉压杆的弹性稳定临界力的公式不一样,但都是长细比的函数。如果将概念朝二维的面或壳进行推广,可以看出实际上弹性稳定的临界应力都是所谓“名义长细比”的直接函数。
  实际工程中的金属结构基本都是弹塑性材料,塑性对结构承载力的影响典型的是切线模量理论,不知道这是不是最合理简化的模型?结构的缺陷敏感性(对初始变形, 对残余应力)和结构的几何形式有关,几何效能最好的往往缺陷敏感性最大。这是和几何形式有关的一个定性的性质。这些力学的讨论都应该结合具体的真实结构物进行,这样才能真正的理解某些抽象的概念,更为重要的是,只有这样才能学会应用这些概念的方法。这就是我所理解的概念设计的真谛。将此想法继续推广,是否有可能将经典力学的有关概念(例如质点和刚体力学以及振动理论)一块统一起来。凡是力学均需研究具体的结构系统,这就牵涉到建筑抽象简化模型(质点和刚体就有很大的用途)。运动和振动的一般理论对理解结构动力学是有帮助的。
刚体力学的一般理论可以应用到包括材力、弹力甚至结构动力学里面许多地方。例如在材力中,通常可将杆看做由一系列的刚片弹性连接得到。这些刚片的变形关系描述了杆件最基本的特性。刚片绕形心只转动而不发生横向平动,这是纯弯曲的情况。横向平动直接对应的是受剪状态。这样也很好理解为什么纯弯曲时为什么没有剪应力,因为转动时刚片上各点的速度是永远垂直于刚片平面自身的。杆件受扭是另外一个例子,在扭转时,刚片必然要沿着某个中心转动,找到这个中心很关键。截面的拓扑分类决定了该转动中心(即剪心)的位置特点。因为刚片在自身平面内转动,则首先会产生平面内的剪应力,由剪应力的互等定理,必然会引起垂直于刚片平面的剪应力,于是刚片发生翘曲变形。受剪弯曲的情形是也会有此种情况,但一般把该变形忽略了(为什么能忽略,因为剪切变形和相应的剪切应力相对刚片的转动变形是小量)。在纯扭转时,只会产生剪应力,如果是约束扭转,则会产生正应力,因为翘曲变形被限制了。
  材力中的刚片理论立即可以向弹力推广,弯曲薄片在两个方向都是刚片体系。与材力中最大的不同是某对刚片的的面外转动会引起另一对刚片的面内转动,这是个耦合的关系。因为是小变形,所以可以使用叠加原理,于是,可将薄板的变形分解为两次加载弯曲的过程,这样可将两次的扭率进行叠加,于是就得到了经典的薄板弯曲的微分方程。薄板的平面应力或平面应变问题可采用类
返回目录 上一页 下一页 回到顶部 1 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!